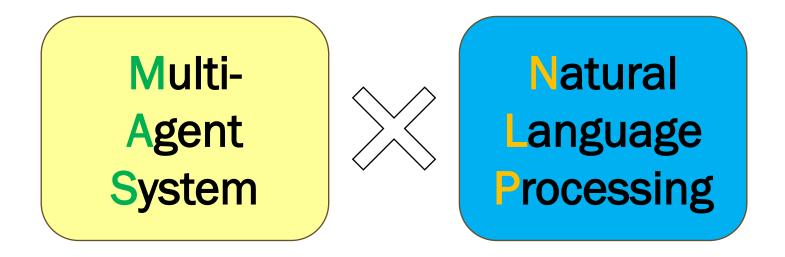
Human-Swarm Interaction through Natural Language Commands


CNIT 581-SDR [Spring 2021]: Final Presentation

Roman Ibrahimov, Yifei Hu

Project Introduction

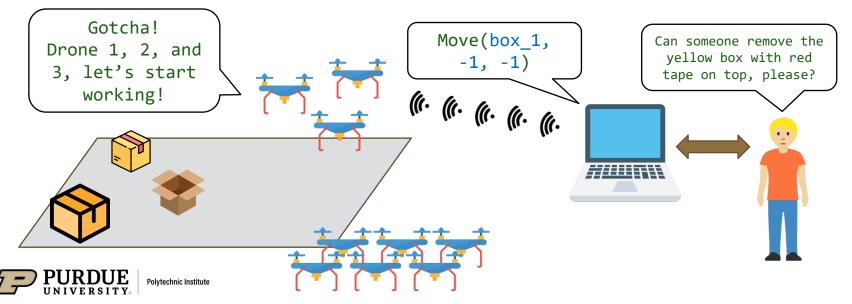
Motivation

Project Introduction

Motivation

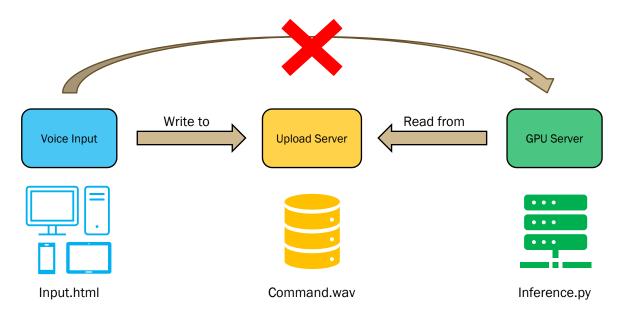
- Why multi-agent systems are important?
 - Widely exist in nature and engineering applications.
 - Offers better autonomy, robustness, flexibility, etc.
 - Can achieve sophisticated missions that are well beyond individual system's capability
- Why using natural language to interact with the robots?
 - Natural language is the most "natural" way for human to communicate with each other
 - $\circ \quad \text{No specific training required}$

Background


- NLP technology is used to extract explicit command(s) from natural language
 - Ontology-based NL control system [1][2]
 - Pre-defined Syntax [3]
 - Robots can also use NL to respond [4]
- · Human-swarm interaction is a relatively new field
 - Human-swarm interaction based on augmented reality tablet application [5]
 - An inherently collaborative task: collective transport [5]
 - Human-swarm interaction based on tablet application [6]
 - Quick manipulation of the swarm [6]

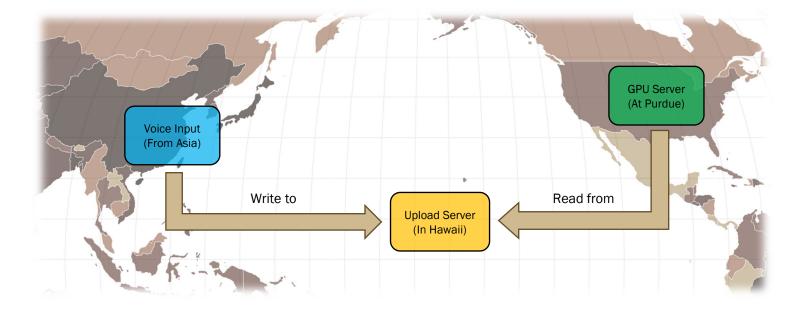
[1] Hong, J. H., Min, B. C., Taylor, J. M., Raskin, V., & Matson, E. T. (2012, October). NL-based communication with firefighting robots. In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 1461-1466). IEEE.
[2] Matson, E. T., Taylor, J., Raskin, V., Min, B. C., & Wilson, E. C. (2011, December). A natural language exchange model for enabling human, agent, robot and machine interaction. In *The 5th International Conference on Automation, Robotics and Applications* (pp. 340-345). IEEE.
[3] Matuszek, C., Herbst, E., Zettlemoyer, L., & Fox, D. (2013). Learning to parse natural language commands to a robot control system. In *Experimental robotics* (pp. 403-415). Springer, Heidelberg.
Polytechnic Institute [4] Raman, V., Ligno, C., Fincanen, C., Lee, K. C., Marcus, M. P., & Kress-Gazit, H. (2013, June). Sorry Dave, I'm Afraid I Can't Do That: Explaining Unachievable Robot Tasks Using Natural Language. In Robotics: Science and Systems (Vol. 2, No. 1, pp. 2-1).
[5] Diaz-Mercado, Yancy, Sung G. Lee, and Magnus Egerstedt. "Human-swarm interactions via coverage of time-varying densities." *Trends in Control and Decision-Making for Human-Robot Collaboration Systems* (2017): 357-385.

[6] Patel, Jayam, Yicong Xu, and Carlo Pinciroli. "Mixed-granularity human-swarm interaction." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

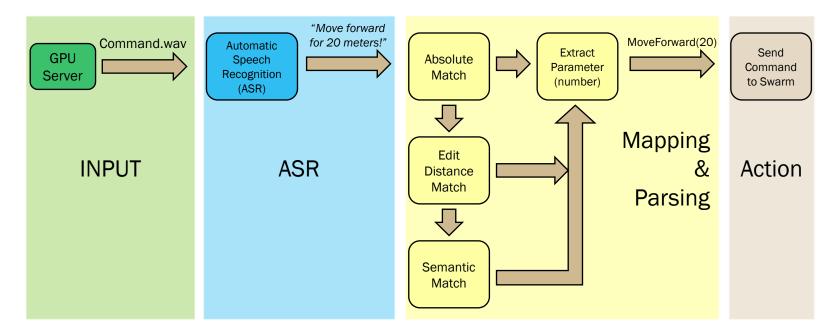

Objectives

- · Build a swarm capable of executing various tasks
- Allow any users to control and interact with the swarm using natural language

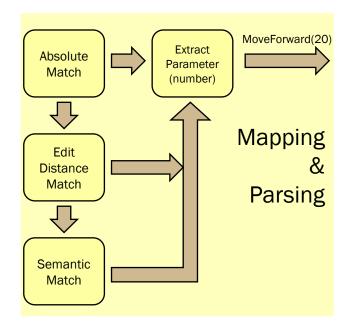
Approaches: Communication

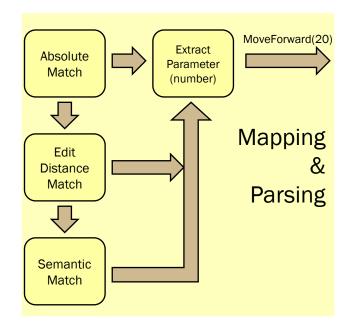

Across different programming languages, operating systems, hardware, and locations

Approaches: Communication CONT.


Across different programming languages, operating systems, hardware, and locations

Approaches: Process the voice input


A hybrid model with multiple layers


Approaches: Process the voice input

A hybrid model with multiple layers

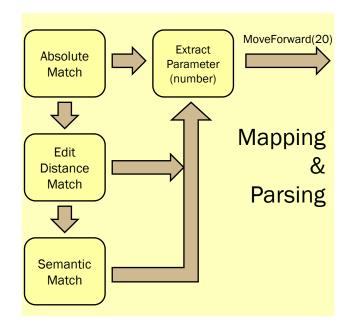
The parsing and mapping module

Polytechnic Institute

• Edit Distance [1] [2]

- Compare the character-level differences of 2 given strings
- \circ "what" → "whatttt" = 3

• BERT-MRPC [3]


- Compare the semantic similarity of 2 given sentences
- o "Speed up" = "Go faster" = "Move faster"
- \circ SOTA, but imperfect
- Stanza [4]
 - Recognize numbers in a given sentence

[1] Damerau, Fred J. "A technique for computer detection and correction of spelling errors." Communications of the ACM 7, no. 3 (1964): 171-176
[2] Levenshtein, Vladimir I. "Binary codes capable of correcting deletions, insertions, and reversals." In Soviet physics doklady, vol. 10, no. 8, pp. 707-710. 1966.
[3] https://huggingface.co/textattack/bert-base-uncased-MRPC

[4] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton and Christopher D. Manning. 2020. Stanza: A Python Natural Language Processing Toolkit for Many Human Languages. In Association for Computational Linguistics (ACL) System Demonstrations. 2020.

Approaches: Process the voice input

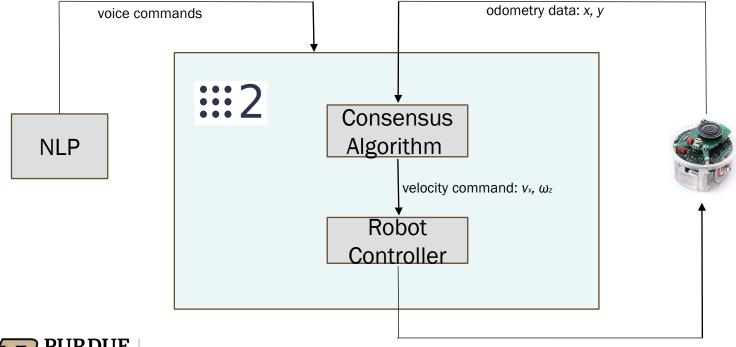
Add new commands

- The system is very extensive. New commands can always be added without programming.
- For one action, there can be multiple Text forms (to improve the matching accuracy)

#	Sample Text	Parameter
1	Turn left	Nullable
1	Make a left turn	Nullable
2	Move forward for # meters	Not Null
15	Hit the wall	Nullable

Approaches: ROS2 implementation

ROS1 vs ROS2


ROS1	ROS2	
Supports single robot per ROS network	Supports multiple robots per ROS network	
Architecture includes a central system controller "Master"	"Master"-less system with nodes capable of self-discovery	
Concepts of QoS, Security absent	New concepts of QoS, Security introduced	
Only CMake projects are supported	Supports multiple build systems with build isolation	

What's happening after the swarm receiving command from the NLP pipeline

Result and Analysis

Demo video: simulation, real world experiments, failures, more failures, and success

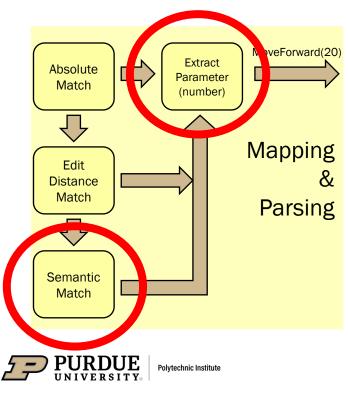
https://www.youtube.com/watch?v=qRUkHuRrFbM

Conclusion

What have we achieved?

- A Human-Swarm Interaction System with natural language user interface
 - Successfully used voice commands to control the robots
- A modular, extensive framework with good compatibility
 - Compare to end-to-end solutions, a modular framework is easier to optimize and debug
 - The framework can work with various programming language and operating system
 - Adding new commands does not require any programming
- A chance to discover the engineering challenges in a research project
 - Implementing an idea could be more difficult than producing new ideas.
 - Making things work in the physical world requires more efforts than simulations

Conclusion CONT.


What did we fail to achieve?

- Bi-directional natural language communication
 - o The swarm cannot respond in natural language
- Parsing more complicated tasks and fuzzy information
 - Tasks consist of multiple actions: "Bring Object A to XXX location without getting too close to Object B"
 - "Move forward a little bit." How far is "a little bit"?

Future works

On the NLP side

- Fine-tune the BERT model with more data
 - The pre-trained language models can always be fine-tuned with new training data
 - Use generative models to create paraphrases of

existing commands

- Parse the input unit (ex: from meter to feet)
 - Currently, our system only support 1 input unit

Future works

On the Robotics side

- Building multi-agent system in real life
 - o Currently, we tested only a single agent
- Bigger drones with quad-decks that can lift heavy ogjects
 - \circ $\,$ We used only a Crazyflie 2.1 that can lift max 10 $\,$

grams

- Controlled magnetic grabber
 - We tested uncontrolled magnetic grabber

Who did what

Tasks	Yifei	Roman
Project Planning	50%	50%
Literature Review	50%	50%
System Design	50%	50%
Swarm algorithm implementation	10%	90%
NLP algorithm implementation	90%	10%
Software Integration	50%	50%
Hardware implementation	1%	99%
Blog Maintenance	80%	20%

Thank you!

Roman Ibrahimov

Ph.D. student **Computer and Information Technology** ibrahir@purdue.edu

Yifei Hu

Ph.D. student **Computer and Information Technology** hu381@purdue.edu

polytechnic.purdue.edu

