
1

Human-Swarm Interaction through Natural
Language Commands

Roman Ibrahimov and Yifei Hu

Abstract—In the recent years, there has been a rapid growth
in the field of Technology, which made it possible to produce
high-performance robots in reduced cost and size. As a result,
nowadays, it is possible to deploy a large amount of robots that
collaborate with each other autonomously in a wide variety of
applications, starting from search and rescue to theatrical perfor-
mance. Researchers in the domains of bio-inspired Robotics and
Control Theory are coming up with new approaches to the give
the robotic swarms more autonomy. Although there might be a
high degree of autonomy in the swarm system, full or partial
presence of human operator, who interact with the system, is
always more beneficial to avoid the shortcomings of autonomy.
To achieve tangible interaction, a number of approaches such
as tactile wearables, hand gesture recognition, etc. have been
proposed. However, all these approaches have very narrow
channel of information exchange and the most natural and
productive way to interact with the swarm is yet to be discovered.
In this work, we are applying Natural Language Processing
(NLP) to build a rich and intuitive interaction approach in
which a human gives voice commands to the robots for task
fulfillment.In this work, we have implemented a simulation of
four E-puck robots that receives voice commands from the user
and they together manipulate an object based on the command.
Furthermore, a single nano-quadcopter that grabs a physical
object to deliver to the user was tested.

Index Terms—Consensus Algorithm; NLP; Rendezvous Algo-
rithm; Multi-Agent Systems; Swarm.

I. INTRODUCTION

A. Background

Recent technological advancements can make it possible
to deploy a swarm of robots in real-life scenarios such as
mining [1], bridge inspection [2], search and rescue [3],
space applications [4], etc. In such systems, agents share a
common coordination that is based on distributed algorithms
and information processing among all agents. The global
behaviour of the swarms is not directly stated and it emerges
throughout local interactions. Thus, individual agents cannot
always fulfil the desired tasks by their own.

B. Motivation

Although there exist a number of work that provides robust
swarm autonomy, according to [5], human presence in the sys-
tem is still needed to 1) recognize and mitigate shortcomings
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of the autonomy; 2) have available “out-of-band” information
not accessible to the autonomy and that can be utilized to
increase performance; and 3) convey changes in intent as
mission goals change.

C. Problem Statement

We have reviewed a number of works in Literature Review
section. The reviewed projects seem to be very innovative
and user-friendly. However, the HSI is not tangible and the
operators only experience interaction throughout another de-
vice. The channel of information exchange is very narrow.
The systems do not provide any feedback when there are
unforeseen cases. Moreover, a novice user needs to have some
time in order to learn how to use the tablet-based applications.

D. Objectives

Having all these in mind, we are proposing to use natural
language as a sole way to interact with the swarm because it
is one of the most common ways for humans to communicate.
If a human wants to ask robots to move an object to a certain
location, the human can simply say ”bring me a cup of coffee”.
For human, such commands based on natural language have
very smooth learning curve. Instead of using natural language,
the human can also use an explicit command to achieve the
same outcome:
• MoveObject(Coffee X, 1, 5, 8, 1.5)
In the example above, “Coffee X” represented the object

the human required. The second parameter “1” specified the
quantify of the object. The last three parameters referred to
the human user’s coordinate which could be understood by
the robots.

Clearly, learning and using the explicit commands takes
more efforts. From a sentence with 6 words to a series of
explicit commands, natural language processing technology
could be the bridge where sophisticated technology meets
smooth user experience.

E. Motivation

F. Objectives

G. Problem Statement

II. LITERATURE REVIEW

A. Available Technologies in Human-Swarm Interaction

Since Human-Swarm Interaction (HSI) is relatively a new
research domain, to our knowledge, there is not much work
based on real-life agents in this field. Authors in [6] propose
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a mixed-granularity interface for multi-human-multirobot in-
teraction. The interface is based on a networked augmented
reality application that allows the operators to visualize and
modify the global state of the system collaboratively on com-
mon tablets and smartphones. In this case, the only channel
of interaction with the swarm is a table or smartphone. In a
similar work [7], based on time-varying density functions, the
operator touches tablet screen to design densities to manipulate
the swarm as a whole. The user user sees color-changing visual
feedback on the agents and on the screen.

B. Natural Language Processing in Human-Robot Interaction

Natural language is the default communication method
between humans. Through natural language, we can convey
either simple or extremely complicated information without
special training since language has been the most common
skill for everyone.

Matuszek et al. [8] proposed a statictical machine learning
based method which translated English into robot control
language (RCL). They trained their models on two maps with
routes described in English and RCL and tested the models
on two new maps. The models achieved 71.8% F1 score on
the parsing task.

Matson et al. [9] used ontological semantic technology
(OST) [10] to build a human-robot communication model. The
explicit commands were extracted through natural language in-
puts using Text Meaning Representations (TMRs). The model
was adaptive and required minimal human interference.

The literature showed various methods for human-robot
interaction with natural language technology. However, to our
best knowledge, there are not many research related to natural-
language based human-swarm interaction system.

III. PROPOSED APPROACH

A. System Architecture

The overall system (Fig.1) is based on Robot Operating
System 2 (ROS2). As the project contains simulation of
multiple robots, ROS2 is an ideal tool that supports multiple
robots per ROS network and it has ”Master”-less system with
nodes capable of self-discovery.

Various voice commands are received from a Python script
which runs NLP algorithm. Given the voice commands, the
system triggers velocity commands based on consensus al-
gorithm. The input to the algorithm is the coordinates of
each individual robot. Then, the commands are sent to the
controllers of the robots and the robots move to a certain point
in the plane.

B. Receiving User’s Input

This project used Python language for the back-end algo-
rithms. However, Python did not have libraries that can directly
communicate with user’s microphone devices (PyAudio has
not longer been available for the newer Python versions). We
had to choose different programming languages to build a
user interface and pass the voice command to the back-end
Python algorithms. The users might want to communicate

Fig. 1. An architecture depicting the workflow of the system.

with the swarm on various devices (smartphone, tablet, or
PC) running different operating system (Mac OS, Windows,
Android, or iOS). Therefore, the compatibility of the front-
end (user interface) has become our top concern. To build a
user interface with great compatibility within a relatively short
time period (about 1-3 weeks), we finally decided to choose
HTML and Javascript because any devices or systems should
be able to use web applications.

Fig. 2. Communication between front-end and back-end

Figure above showed the brief communication structure
between the front-end and the back-end. The majority of the
browsers restricted Cross Domain Access so that we were not
allowed to directly send the recorded audio file to the remote
GPU server (to run inference algorithms). To tackle this issue,
we first stored the audio file to a directory (Upload Server)
where both the input device and the GPU server had access
to. Then we created a loop on the GPU server which kept
scanning the directory and detecting any new WAV files (user’s
input commands). If a new WAV file was detected, the GPU
server would run subsequent algorithms on the WAV file and
finally convert the input voice command into certain swarm
actions.

C. Translating User’s Voice

The user’s input was an audio (WAV) file. The swarm
system only understood explicit functions which were pre-
defined. The gap between the input and output was fulfilled
using NLP technology. Figure below showed detailed steps in
the NLP module.

When the GPU server detected a new WAV file in the
Upload Server, it sent the WAV file to the Automatic Speech
Recognition (ASR) layer. We deployed a speech recognition
library (SpeechRecognition) in the ASR layer which would
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Fig. 3. Structure of the NLP module

convert the voice command into text format. The library
used Google Cloud Speech API which (according to Google)
provided the State-of-the-art accuracy and supported 125 lan-
guages.

The return value from the ASR layer would be a string. We
needed to map the string to one of the existing functions and
extract any parameters inside the string.

For each pre-defined function, we also provide at least one
sample natural language form and specify whether the function
required any parameters.

TABLE I
NUMBER OF SIMILAR WORDS WITH DIFFERENT EDIT DISTANCE (ED)

Function Text Form Param.
TurnLeft() Turn left Nullable
TurnLeft() Make a left turn Nullable
TurnLeft() Turn left for N degrees Not Null

TurnRight() Turn right Nullable
... ... ...

MoveForward() Move forward for 20 meters Not Null

Table above showed some sample functions and their text
form(s). For each function, there could be multiple text forms
to increase the success rate of the mapping process. The map-
ping process had 3 steps: absolute match, soft (edit distance)
match, and semantic match.

Absolute match happened when the input text was exactly
the same as one of the text forms. In this case, the input
sentence would be directly passed to the next step without
going through any sophisticated algorithms. If the users were
well trained at the beginning, they would use mostly the
commands already defined in as text forms. However, the
advantage of using natural language to interact with swarm
was that users did not need any special training. Therefore,
the input commands would possibly fail to absolutely match
any text forms and went to the next step: soft match.

Soft match used the edit distance algorithm [11] to mitigate
the potential impact of cases, spellings, singular/plural, tense,
and other minor issues. The edit distance algorithm calculated
the character-level difference between 2 given strings and
returned a number to quantitatively describe the difference.
The soft match step could solve the following situation:
• Input sentence: make left turn.
• function text form: make a left turn.
Sometimes the ASR layer could make mistakes translating

voice into text (for instance, missing a word). In such cases, if

the input sentence and one of the text form had an edit distance
smaller than a certain threshold, we could still consider it a
match. The edit distance algorithm also did not required much
computation power thus could be executed instantly.

If both the absolute and soft matches failed, the input
sentence would go through the semantic match which was
the most sophisticated algorithm in this module. The semantic
match step used a pre-trained BERT language model [12] to
compare the semantic similarity of two given sentences. The
language model would return a percentage to describe the
semantic similarity. We compared the input sentence to every
single function’s text form(s) and considered the one with the
highest semantic similarity to be the correct match.

Running the language model requires much more com-
putation power than other steps, which was the reason we
made it the last option for matching the input sentence to a
function. Latency has been always the concern for human-
robot communication and running the language model would
add latency to the whole system.

After the input sentence being matched to one of the pre-
defined functions, we also needed to extract the parameters
from the input sentence because some of the functions required
certain parameters. In this case, we used the Stanza [13] library
to parse the sentence and extract any numbers in that sentence.
Currently, we only assumed that the input sentence would
contain at least one number and that number would be the
parameter (in our expected unit).

Finally, we sent the function and parameters to the robotics
controller and triggered certain actions. By the end of this
project, we only defined five functions. However, new func-
tions can always be added by typing in their text forms and
specifying whether parameters are needed. The NLP module
was designed to be extendable.

D. Consensus Algorithm

We are going to consider our swarm as a networked
multi-agent system G = (N , E) which has a set of nodes
N ={1, 2, ..., n} according to Figure ??. E is a set of edges
and an unordered par of distinct nodes is denoted as {i, j} ∈ E ,
whereas N i ={j|{i, j} ∈ E} stands for the set of neigboring
nodes i.

In the system, each agent has its initial scalar value xi(0)
∈ R and initial values of the each node in the form of vector
is denoted as x(0) = (x1(0),x2(0)...,xn(0)).

Let xi stand for the heading direction or the information
state of vehicle i. In this case, the dynamics of the consensus
is as follows:

xi(t+1) =
N∑
i=1

wijxj(t) (1)

where N is the set of vehicle i’s neighbors including itself.
Later, the consensus problem states that we have to choose
a control law wij at each time constant t. In this case, the
information state of xi(t) of the all agents should converge to
the same value:

x1(t) = x2(t)=...=xm(t)=x∗ (2)
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where x∗ is a consensus point. There is no communication
between agent i and j if wij = 0. If the value of wij is non-
zero, it means that there is an arc between vertexes j and i.
In this case, the communication model for the network is a
graph that links the agents. Thus, the problem is to determine
the right values of wij such that the system converges to a
global consensus.

E. Randezvous Problem

The goal of randezvous algorithm is to allow a collection of
robots to meet at at the centroid of their initial positions. The
algorithm is actually formulated based on consensus algorithm.

According to the algorithm, we have to model a single-
integrator dynamics ẋi = ui whereas the control input to the
each agent i would be ui ∈ R2. The control input should be
designed in a way that:

lim
t−→∞(xi − xj) = 0,∀i, j = 1, ..., N (3)

ui can be defined as ui =
∑

j∈Ni
(xj − xi) ⇒ ẋi =∑

j∈Ni
(xj − xi). If we consider the above-mentioned undi-

rected graph structure G = (N , E), network dynamics can
be formulated as x = [x1,1x2,1...xN,1x1,2x2,2...xN,2]

T from
which ẋ = −(I ⊗ L)x. L is a graph Laplacian for the graph
G and L = D −A where D and A are adjacency and degree
matrices respectiveley. Based on the properties of L we can
show that the robots final position would be at the average of
the initial conditions.

IV. RESULTS AND ANALYSIS

The proposed approach was applied in two scenarios: a)
simulation and b) real robot.

A. Simulation in Webots

In the Webots simulation environment, we created an
squared arena with four E-puck robots at the corners and one
ball at the center (Fig. 5). The objective was to move the ball
out of the arena.

This task was designed for a multi-agent system because
one single E-puck robot could not push the ball following a
direct line. When the ball tended to leave the designated route,
other E-puck robots must push it back.

In this simulation, we first gave a command by saying
“Move the object.” The voice command went through the
NLP pipeline and was converted into a pre-defined function:
Move(object 1, -1, -1). In this function, “object 1” was the
ball and “-1, -1” represented the coordinate of the target
location. The four E-puck robots first came to the center
According to the Randezvous problem, the meeting point
of the robots would be the center of arena in which the
ball is located. When the above-mentioned voice command
is received, the robots come to the center around the ball. The
movement of the robots towards the center is stopped within
a certain threshold to be able to manipulate the ball. The all
the robots get the same heading direction and remove the ball
from the center of the arena.

B. Experiment with a real drone

We also tested the proposed approach on a real hardware.
Based on the voice commands, a nano-quadcopter delivers a
remote object to a user in Fig. 4.

Fig. 4. A nano-quadcopter picks and delivers a remote object to a user.

V. CONCLUSION

This project demonstrated the possibility to build a human-
swarm interaction system based on natural language com-
mands. We tested the consensus algorithm and various NLP
models in both the simulator and the real world. Within the
limited schedule, we also proposed a unique method to build
stable communication between Javascript and Python.

We are also fully aware of the limitations of this project.
The communication between the front-end and the back-end
could have noticeable latency which was introduced by the
system structure. The swarm was only able to work together
as one and the users were not allowed to give commands to
any specific agents. Our algorithms worked flawlessly in the
simulation. However, we didn’t solve the hardware issues in
the real world experiments and failed to test the swarm in the
real world.

This project is only the beginning of exploring a young
domain with great potentials. More works shall be conducted
in the future.

VI. FUTURE WORKS

A. Dealing with fuzzy expression and units

In the current NLP pipeline, we could not convert fuzzy
expressions into explicit values. Fuzzy information is very
common in natural language. Below is an example of fuzzy
Vs. explicit expression:

• Move forward a little bit.
• Move forward for 2 meters.

Interpreting fuzzy expression (like “a little bit”) is still a
challenge in the NLP domain. However, the language would
not be “natural” if there is no fuzzy information.

Another issue we encountered was to convert different input
unit into the unit that the swarm understood. The swarm only
used meter as the unit for distance, but the input could contain
other units which could cause troubles. In the future, we might
be able to create a rule-based unit-conversion system to tackle
this issue.
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Fig. 5. Object manipulation in simulation: (left) the agents come to a meeting point in the center, (middle) agents stop around the object, and (right) agents
move the object from the center

B. Bi-directional natural language interaction

Normally, communication came both ways. In our system,
we could send commands to the swarm but could not receive
any feed back from the swarm. The next step for us to explore
is to display the sensor data (and other output data) from the
swarm at the front-end user interface. It would be better if
we can also translate the sensor data to natural language and
make them more easy to understand by untrained users.

C. Modified drone hardware

The current Crazyflie 2.1 platform that is used in the project
has some limitations such maximum weight-lift capacity of
10g. It, in turn, makes it difficult to manipulate bigger objects
that are heavier than 10g. Having it in mind, we plan to build a
bigger quadcopter based on the same platform using BigQuad
deck, which enables lifting bigger objects. Furthermore, we
plan to add a controllable magnetic grabber and in this case,
it would be possible to pick and leave objects in a desirable
positions.

VII. INDIVIDUAL CONTRIBUTIONS

Table below showed the individual contribution for Yifei
Hu and Roman Ibrahimov in this project.

TABLE II
INDIVIDUAL CONTRIBUTION

Tasks Yifei Roman
Project Planning 50% 50%
Literature Review 50% 50%
System Design 50% 50%
Swarm algorithm implementation 10% 90%
NLP algorithm implementation 90% 10%
Software integration 50% 50%
Hardware implementation 1% 99%
Blog Maintenance 80% 20%
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